203

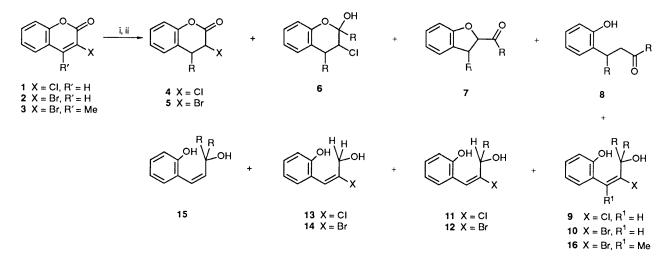
Reaction of 3-Halogeno-2H-1-benzopyran-2-ones with Organometallic Compounds. Synthesis of 4-Alkyl-2H-1-benzopyran-2-ones. X-Ray Molecular Structure of 3-Bromo-3,4-dihydro-4-isopropylcoumarin

Angel Alberola,^a Blanca Calvo,^a Alfonso Gonzalez Ortega,^{*,a} Martina Vicente,^a Santiago G. Granda^b and Juan F. Van der Maelen^b

^a Departamento de Química Orgánica, Universidad de Valladolid, Spain ^b Departamento de Química Física y Analítica, Facultad de Químicas, Universidad de Oviedo, Spain

3-Halogeno-2*H*-1-benzopyran-2-ones react with magnesium, lithium, aluminium and copper derivatives to give 3,4-dihydrocoumarins and 3-(*o*-hydroxyphenyl)propenols as major products. The nature and the ratio of the products in the final mixture depend on the solvent and on the organometallic reagent. Grignard derivatives yield 1,4-monoalkylation compounds in tetrahydrofuran (THF) or 1,2-dialkylation derivatives in toluene. In some cases the dehalogenation competes with the 1,2-alkylation process in the reactions with alkyllithiums. The presence of the halogen at C-3 increases the reductive ability of organoaluminiums. In general, the reaction with lithium dialkylcuprates leads to complex mixtures of products. The 4-alkyl-3-halogeno-3,4-dihydrocoumarins obtained undergo dehydrohalogenation easily, and lead to 4-alkylcoumarins in good yields. The tandem alkylation–dehydrohalogenation of 3-halogeno-2*H*-1-benzopyran-2-ones constitutes a versatile synthesis of 4-alkylcoumarins.

The reaction of coumarins with organometallic compounds is a very well known synthetic method to 2H-1-benzopyrans. We have now studied the reactivity of 3-chloro- and 3-bromocoumarins towards magnesium, lithium, aluminium and copper derivatives in order to confirm the influence of the halogen on the behaviour of these substrates.

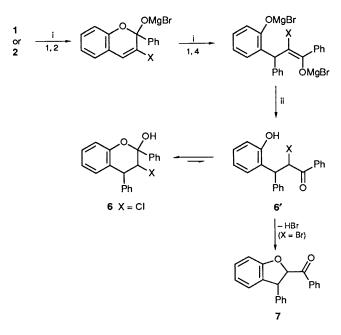

The Grignard derivatives react with 3-chlorocoumarin 1, 3bromocoumarin 2, and 3-bromo-4-methylcoumarin 3 leading to dihydrocoumarins, chromen-2-ols, and open-chain compounds as a consequence of 1,4- and/or 1,2-addition or reduction processes (Scheme 1). The rate of reaction is intermediate between that with the organolithiums and that with organoaluminiums, and the solvent plays an important role in determining the ratio of the products in the final mixture (Table 1).

As previously described for 3-phenyl- and 3-ethoxycarbonylcoumarin,¹⁻³ in our case the 1,4-addition process was favoured when the reactions were carried out in ether solvents (THF or diethyl ether) and with increasingly bulky groups R; the resulting 4-alkyl-3-halogeno-3,4-dihydrocoumarins **4** and **5** were obtained as a mixture of *cis* (80–90%) and *trans* (20–10%) isomers. Indeed a double 1,2-addition was the major process for 3bromo-4-methylcoumarin or when benzene or toluene was used as solvent.

The ratio of products in the final mixture also depends on the nature of the magnesium derivative; thus, EtMgI and EtMgBr led to the same mixture, but MeMgI did not produce 1,4-addition, and Pr^iMgBr gave reduction products (*E*)-2-bromo-1-(*o*-hydroxyphenyl)-4-methylpent-1-en-3-ol **12d** and (*E*)-2-chloro-1-(*o*-hydroxyphenyl)-4-methylpent-1-en-3-ol **11d** in 50-60% yield.

On the other hand, 3-chloro- and 3-bromo-coumarin behave in similar fashion towards organometallics. Only in the case of phenylmagnesium bromide did 3-bromocoumarin lead to phenyl 2,3-dihydro-3-phenylbenzofuranyl ketone **7f**, whereas 3chlorocoumarin yielded 3-chloro-3,4-dihydro-2,4-diphenyl-2*H*-1-benzopyran-2-ol **6f**, but both products derive from a common hydroxy ketone (acyloin) intermediate **6'** that in the hydrolysis leads to the benzofuran **7** derivative—if X = Br—or to the chromanol—if X = Cl—(Scheme 2).

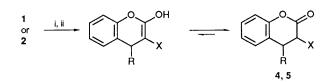
As an alternative to the preparation of compounds 4a, 5a, 4f and 5f we have tested the reactivity of compounds 1 and 2 with



Scheme 1 a, R = Me; b, R = Et; c, R = Bu; d, R = Prⁱ; e, R = Buⁱ, f, R = Ph. Reagents: i, organometallic compounds; ii, water

Table 1 R	eaction of com	nounds 1 2 au	nd 3 with Gri	gnard derivatives

	RMgX	Solvent ^a	Yield (%)							
Coumarin			4	5	6	7	9	10	11	12
1	MeMgI	Et ₂ O–PhMe					9a 85			
i	EtMgBr	Et ₂ O–PhMe	4b 55				9b 40			
l	EtMgBr	PhMe	4b 25				9b 70			
	EtMgBr	Et ₂ O	4b 70				9b 25			
	EtMgI	Et ₂ O	4b 75				9b 20			
	BuMgBr	PhMe	4c 5				9c 85			
I	BuMgBr	Et ₂ O	4c 40				9c 50		11c 5	
	BuMgBr	THF	4c 65				9c 20		11c 15	
	Pr ⁱ MgBr	Et ₂ O–PhMe	4d 65				9d 15		11c 15	
	Pr ⁱ MgBr	PhMe	4d 20				9d 20		11d 57	
	Pr ⁱ MgBr	Et ₂ O	4d 25				9d 42		11d 30	
	PhMgBr	Et ₂ O-PhMe			6f 20		9f 60			b
	MeMgI	$Et_2O-PhMe$						10a 80		
	EtMgBr	Et ₂ O-PhMe		5b 40				10b 52		b
	EtMgBr	PhMe		5b 27				10b 65		b
	EtMgBr	THF		5b 66				10b 30		b
	EtMgBr	Et ₂ O		5b 40				10b 52		b
	BuMgBr	PhMe		5c 12				10c 70		12c 14
	BuMgBr	THF		5c 72				10c 20		
2	Pr ⁱ MgBr	Et ₂ O–PhMe		5d 60				10d 22		12d 16
	Pr ⁱ MgBr	PhMe		5d 24				10d 16		12d 56
	Pr ⁱ MgBr	Et ₂ O		5d 70				10d 12		12d 10
	PhMgBr	$\tilde{Et_2O}-PhMe$				7f 60		10f 20		с
3	EtMgBr	Et ₂ O								d


^a The reactions were carried out at 0 °C for 30 min. ^b Compounds 15 (4–10%) were also isolated. ^c Compound 8f (15%) was isolated. ^d 4-Bromo-3ethyl-5-(o-hydroxyphenyl)hex-4-en-3-ol 16b (70%) was isolated.

Scheme 2 Reagents: i, PhMgBr; ii, water

lithium dimethylcuprate and lithium diphenylcuprate; the reactions led to a complex mixture of compounds except for 3chlorocoumarin and lithium dimethylcuprate which yielded compound **4a** (65%) as a mixture of *cis* (60%) and *trans* (40%) isomers. The difference in the ratio of isomers when lithium dimethylcuprate and Grignard derivatives were used is a consequence not of the organometallic reagent's nature but of the stereochemical interactions in the kinetically controlled tautomerization of the 4-alkyl-3-halogeno-4*H*-1-benzopyran-2-ol to afford the final product (Scheme 3).

Lithium derivatives react with 3-halogenocoumarins to afford 1,2-addition compounds as major products 9 or 10, but in

Scheme 3 Ratio of *cis: trans* isomers: R = Me, 60:40; R = Et, 80:20; R = Bu, 85:15; $R = Pr^{i}$, 90:10; *Reagents:* i, organometallic compound; ii, water

the reaction of compound 1 with butyllithium, the chromanone 4c can be isolated in 30% yield (Table 2). From the reaction mixtures when butyllithium was used as reagent, important amounts of dehalogenation compounds could be obtained; this behaviour was also observed with magnesium and copper derivatives.

It has previously been shown that coumarins suffer a double 1,2-addition towards trialkylaluminiums in hexane, benzene, or toluene.^{4.5} In the present case, the halogen at C-3 increases the reduction ability of organoaluminiums, with the 1,2-alkylation and 1,2-reduction products 11 or 12 being the major products of the reactions; in the case of triisobutylaluminium, double 1,2-reduction is the most important process (compounds 13 or 14) (Scheme 4). On the other hand, trimethylaluminium is less reactive than other organoaluminiums, and it requires higher concentrations and reaction times to give moderate yields of dialkylated diols 9a and 10a (Table 3).

The reactivity of organoaluminiums diminished when diethyl ether or THF were used as the solvent, whereas these solvents increased the reductive power; as an example, with the system Et_3Al -THF compound 13 was obtained 60% yield (Table 3).

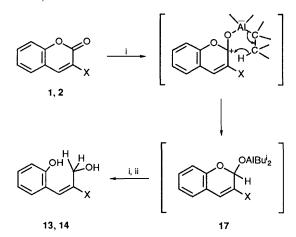
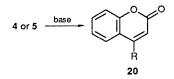

The reduction of 3-chloro- and 3-bromo-coumarin with DIBAL-H is not a satisfactory method to obtain compounds 13 and 14. The first step to the hemiacetal intermediate 17 is a fast process, but its transformation to the final product is very slow at 0 $^{\circ}$ C. Nevertheless this intermediate is transformed to

Table 2 Reaction of compounds 1 and 2 with lithium derivatives

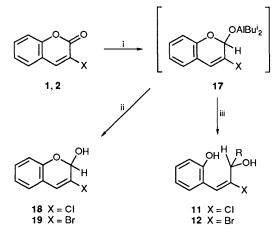
		Solvent	Yield (%)				
Coumarin	RLi		4	9	10	15	
1	MeLi	Et ₂ O ^a		9a 80			
1	BuLi	PhMe ^b	4c 10	9c 80			
1	BuLi	Et ₂ O ^a	4c 20	9c 70			
2	MeLi	Et_2O^a			10a 60	15a 25	
2	BuLi	PhMe ^b			10c 60	15c 35	

^a The reactions were carried out at 0 °C. ^b The reactions were carried out at -40 °C.

the monoalkylated derivatives 11 and 12, by addition of one equivalent of organolithium or a Grignard derivative (Scheme 5, Table 4).



Scheme 4 Reagents: i, Buⁱ₃Al; ii, water


The described monoalkylation process could be achieved from the corresponding coumarin and organoaluminium as previously reported,^{4.5} but the methodology presented here is advantageous because lithium and magnesium derivatives are more easily accessible than are the aluminium ones, and because some of the last substrates showed only reductive (Buⁱ₃Al) or alkylation (Me₃Al) properties.

The yields summarized in Tables 1–4 were determined by ¹H NMR spectroscopy on the reaction mixtures. In the Experimental section, the yields refer to pure, isolated compounds in optimized experiments.

The isomeric mixture of 4-alkyl-3-halogeno-3,4-dihydrocoumarins 4 and 5 was transformed into 4-alkylcoumarins 20 by a base-promoted dehydrohalogenation and the yields and the experimental conditions are summarized in Table 5. The major isomer of the 3-bromo derivatives 5 is easily dehydrohalogenated in pyridine at 50 °C, whereas the minor component is recovered unchanged. Otherwise, 3-chloro derivatives 4 were recovered unchanged after treatment with pyridine in refluxing benzene. Moreover we have been unable to epimerize the mixture to the most stable compound by reaction with Ac₂O– AcONa;¹ 4-alkylcoumarins are obtained from both 3-chloro and 3-bromo derivatives, dehydrohalogenation of the major isomer being easier than that of the minor one.

The cis-configuration of the 3-bromo-3,4-dihydro-4-isopropylcoumarin 5d, determined by X-ray crystallography (Fig. 1), was extended for all the major isomers of the 3-halogeno

Scheme 5 Reagents: i, DIBAL-H; ii, water; iii, RMgX or RLi

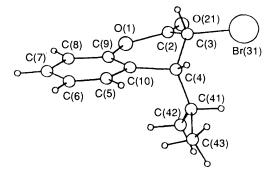


Fig. 1 X-Ray structure and crystallographic numbering for compound 5d (hydrogen atoms omitted)

derivatives 4 and 5 because of the observed systematic behaviour of their chemical shifts for H^a (Table 6), and their behaviour towards Ac_2O -AcNa (Table 5). The *cis*-configuration of the major isomers was corroborated by NOE experiments between H^a and H^b, and by the observed anisotropy for methylene protons in 4b and the methyl protons in 4d in their ¹H NMR spectra (this anisotropy is higher in 3-chloro than in 3-bromo derivatives).

On the other hand, our results are in agreement with those previously described by Ivanov and Bojilova¹ for 3-phenylcoumarin, leading to the less stable *cis*-isomer assigned by a study on epimerization with Ac_2O -AcNa and the coupling constants.

Experimental

M.p.s were measured on a Leitz Laborlux D microscope with a heating device and are uncorrected. NMR spectra were recorded on either Bruker AC80 or Bruker WP200 SY spectrometers and chemical shifts are given downfield from SiMe₄ as internal standard. Mass spectra were measured on a Hewlett-Packard 5988A mass spectrometer.

Table 3 Reaction of	f compounds 1	l and 2 with	ı R ₃ Alª
---------------------	---------------	---------------------	----------------------

	R ₃ Al	Solvent	Yield (%)					
Coumarin			9	10	11	12	13	14
1	Me ₃ Al	PhMe	9a 75					
1	Et ₃ Al	PhMe	9b 40		11b 55			
1	Et ₃ Al	THF					13 65	
1	Bu ₃ Al	PhMe	9c 7		11c 85			
1	Bu ⁱ ₃ Al	PhMe			11c 40		13 50	
2	Me ₃ Al	PhMe		10a 70				
2	Et ₃ Ål	PhMe		10b 17		12b 75		
2	Bu ₃ Al	PhMe		10c 5		12c 85		
2	Bu ⁱ ₃ Al	PhMe				12c 15		14 80

^a The reactions were carried out at 0 °C for 10 h.

Table 4 Reaction of compound 1 and 2 with DIBAL-H/RM

	RM	Yield (%)					
Coumarin		11	12	13	14	18	19
1				13 7	· · · · ·	18 85	
1	MeMgI	11a 85		13 9			
1	Pr ⁱ MgBr	11d 49		13 19			а
1	BuLi	11c 70		13 2			b
2							19 90
2	EtMgBr		1 2b 90		147		
2	PhMgBr		12f 80				

^a Compound 9d (25%) was isolated. ^b Compound 9c (20%) was isolated.

 Table 5 Dehydrohalogenation of the isomeric mixture of compound 4 or compound 5

Substrate	Method	Time (h)	Yield (%) of compound 20	Recovery (%) of unchanged substrate
	a	2	3 20a	92 cis/trans
4b	a	2	2 20b	95 cis/trans
4 c	a	2	5 20c	90 cis/trans
4d	а	2	3 20d	95 cis/trans
5b	a	2	80 20b	10 trans
5c	a	2	92 20 c	5 trans
5d	a	2	93 20d	5 trans
4 a	b	2		95 cis/trans
4b	b	10	2 20b	90 cis/trans
4 c	b	10	5 20c	90 cis/trans
5b	b	10	2 20b	90 cis/trans
4 a	с	0.2	33 20a	27 cis/37 trans
5b	с	3	80 20b	, ,
4c	с	3	85 20c	
5b	с	0.2	40 20b	40 cis/10 trans
5b	c	3	75 20b	
5c	c	3	80 20 c	

Method ^a Boiling benzene with a few drop of pyridine. ^b0.1 mol dm⁻³ NaOAc in Ac₂O at room temperature. ^c 0.1 mol dm⁻³ NaOAc in Ac₂O at reflux.

Starting materials 3-chlorocoumarin,⁶ 3-bromocoumarin⁷ and 3-bromo-4-methylcoumarin⁸ were prepared as previously described.

Reaction of Compound 1 with Me₂CuLi. Synthesis of 3-Chloro-3,4-dihydro-4-methyl-2H-1-benzopyran-2-one **4a**.—To a stirred suspension of CuI (0.31 g, 1.6 mmol) in dry diethyl ether (20 cm³) under N₂ at -10 °C was added a solution of MeLi in diethyl ether (2 cm³; 3.2 mmol). The colourless solution was cooled to -40 °C and a solution of compound 1 (0.2 g, 1.1 mmol) in diethyl ether (20 cm³) was added dropwise. The mixture was stirred at between -40 and -30 °C for 30 min, and quenched with saturated aq. NH₄Cl (15 cm³). The product was extracted with EtOAc (3 × 20 cm³) and the extract was washed sequentially with water and brine. The organic layer was dried over anhydrous MgSO₄, the solvent was evaporated off, and the residue was flash chromatographed on silica gel with methylene dichloride as eluant, to yield *title compound* **4a** (0.2 g, 60%) as a mixture of *cis/trans* (3/2) isomers; b.p. 45—46 °C/0.5 mmHg (Found: C, 61.2; H, 4.7. $C_{10}H_9CIO_2$ requires C, 61.0; H, 4.6%). cis **4a**, $\delta_H(200 \text{ MHz}; \text{CDCl}_3)$ 1.43 (3 H, d, J 7 Hz), 3.44 (1 H,

dq, J4, 7 Hz), 4.71 (1 H, d, J4 Hz) and 6.9-7.4 (4 H, m); m/z 198 (M⁺ + 2, 24%), 196 (M⁺, 78) and 133 (100).

trans-**4a** $\delta_{\rm H}(200 \text{ MHz}; {\rm CDCl}_3)$ 1.37 (3 H, d, J 7 Hz), 3.32 (1 H, dq, J 5, 7 Hz), 4.43 (1 H, d, J 5 Hz) and 6.91–7.32 (4 H, m); m/z 198 (M⁺ + 2, 24%), 196 (M⁺, 75) and 133 (100).

Reaction of Compounds 1, 2 and 3 with Organometallic Compounds. General Procedure.—(a) With organomagnesium, organolithium, and organomaluminium compounds. To a magnetically stirred solution of compound 1, 2 or 3 (0.022 mol) in the appropriate solvent (Tables 1–3) (100 cm³) was added Table 6 Chemical shifts and coupling constants (J^{ab} in Hz) for H^a in compounds 4 and 5

(X = Cl)			(X = Br)		
R	Major	Minor	Major	Minor	
Me	4.71 (4.3)	4.43 (4.6)	<u> </u>		
Et	4.86 (4.6)	4.56 (2.7)	4.80 (3.8)	4.57 (2.2)	
Bu	4.81 (4.6)	4.52 (2.6)	4.76 (3.8)	4.56 (2.3)	
Pr ⁱ	4.91 (6.3)	4.65 (2.1)	4.87 (5.5)	4.76 (1.9)	

 Table 7 Fractional positional parameters (with esd's) for compound

 5d

Atom	x	У	Ζ
Br(31)	0.589 7(4)	0.032 9(7)	0.125 8(2)
O(1)	0.377(2)	0.583(4)	0.191(1)
O(21)	0.602(2)	0.486(3)	0.186 7(8)
C(2)	0.490(4)	0.423(6)	0.179(1)
C(3)	0.436(3)	0.194(6)	0.155(2)
C(4)	0.290(3)	0.187(5)	0.106(2)
C(5)	0.035(3)	0.283(8)	0.132(2)
C(6)	-0.057(3)	0.406(7)	0.153(2)
C(7)	-0.008(3)	0.607(7)	0.190(2)
C(8)	0.140(3)	0.653(7)	0.201(2)
C(9)	0.231(3)	0.513(7)	0.176(2)
C(10)	0.186(3)	0.325(6)	0.139(2)
C(41)	0.302(3)	0.293(7)	0.040(1)
C(42)	0.346(3)	0.527(6)	0.032(2)
C(43)	0.171(3)	0.192(7)	-0.011(2)

Table 8 Bond lengths (Å) and bond angles (°) (with esd's) for compound 5d

Br(31)–C(3)	1.912(4)	C(5)-C(6)	1.261(5)
O(1)-C(2)	1.470(4)	C(5)-C(10)	1.423(4)
O(1)-C(9)	1.418(3)	C(6)-C(7)	1.436(5)
O(21)–C(2)	1.099(4)	C(7)–C(8)	1.401(4)
C(2)–C(3)	1.490(5)	C(8)-C(9)	1.356(5)
C(3) - C(4)	1.584(4)	C(9)-C(10)	1.368(5)
C(4)-C(10)	1.534(4)	C(41)-C(42)	1.450(5)
C(4)-C(41)	1.534(5)	C(41)-C(43)	1.614(4)
C(2)–O(1)–C(9)	118.8(3)	C(6)-C(7)-C(8)	117.8(3)
O(1)-C(2)-O(21)	117.8(3)	C(7)-C(8)-C(9)	119.6(4)
O(1)-C(2)-C(3)	114.3(3)	O(1)-C(9)-C(8)	112.9(3)
O(21)-C(2)-C(3)	127.8(4)	O(1)-C(9)-C(10)	123.9(3)
Br(31)-C(3)-C(2)	108.5(2)	C(8)-C(9)-C(10)	123.2(3)
Br(31)-C(3)-C(4)	113.0(3)	C(4)-C(10)-C(5)	124.4(3)
C(2)-C(3)-C(4)	117.0(3)	C(4)-C(10)-C(9)	121.1(3)
C(3)-C(4)-C(10)	103.5(3)	C(5)-C(10)-C(9)	114.2(3)
C(3)-C(4)-C(41)	114.0(2)	C(4)-C(41)-C(42)	123.4(3)
C(10)-C(4)-C(41)	110.7(3)	C(4)-C(41)-C(43)	107.5(3)
C(6)-C(5)-C(10)	126.3(4)	C(42)-C(41)-C(43)	118.0(3)
C(5)-C(6)-C(7)	118.8(3)		. ,
	. ,		

dropwise (30 min) the organometallic compound (0.083 mol) under nitrogen (see Tables 1–5). At the end of the reaction (monitored by TLC) the solution was poured into ice-water and acidified. The organic layer was decanted, washed with saturated aq. NaHCO₃, and dried (MgSO₄). The mixture (after removal cf the solvent) was chromatographed on silica gel with methylene dichloride (for compounds 4-10) or methylene dichloride-diethyl ether (20:1) (for compounds 11-14) as eluant, and the products were purified by distillation under reduced pressure or recrystallization from hexane-benzene.

(b) Reaction of 3-halogenocoumarin 1 or 2 with DIBAL-H/organometallic compounds. One-pot synthesis of compounds 11 and 12. To a stirred solution of compound 1 or 2 (2.2 mmol) in toluene (50 cm³) under nitrogen at 40 °C was dropped a solution of DIBAL-H in hexane (2.3 cm³; 2.3 mmol). The temperature was allowed to rise to 0 °C for 15 min and then a solution of the appropriate Grignard reagent in diethyl ether (4.4 mmol) or butyllithium (in hexane) was syringed into the reaction mixture, and the mixture was stirred at 0 °C for 30 min. After hydrolysis, the solution was worked up as described above.

The physical and spectral characteristics of the products 4– 18, and the optimized experimental conditions and chemical yields are given below.

3-Chloro-4-ethyl-3,4-dihydro-2H-1-benzopyran-2-one 4b.

[EtMgBr, Et₂O; 0 °C; 66% as a mixture of *cis/trans*-isomers (85:15)]; b.p. 46–47 °C/0.2 mmHg (Found C, 62.6; H, 5.2. C₁₁H₁₁ClO₂ requires C, 62.7; H, 5.3%); *m/z* 212 (M⁺ + 2, 24%), 210 (M⁺, 76) and 181 (100). cis-4c δ_{H} (200 MHz; CDCl₃) 0.97 (3 H, t, *J* 7 Hz), 1.63 (1 H, m), 2.01 (1 H, m), 3.16 (1 H, ddd, *J* 5, 9, 5 Hz), 4.86 (1 H, d, *J* 5 Hz) and 7.0–7.43 (4 H, m). *trans*-4a δ_{H} 4.56 (1 H, d, *J* 3 Hz).

4-Butyl-3-chloro-3,4-dihydro-2H-1-benzopyran-2-one 4c. [BuMgBr, THF; 0 °C; 60% as a mixture of cis/trans isomers (90:10)]; b.p. 100–101 °C/0.4 mmHg (Found: C, 65.6; H, 6.15. C₁₃H₁₅ClO₂ requires C, 65.4; H, 6.3%); m/z 240 (M⁺ + 2, 23%), 238 (M⁺, 68) and 181 (100). cis-4c $\delta_{\rm H}$ (80 MHz; CDCl₃) 0.91 (3 H, t, J 6 Hz), 1.40 (4 H, m), 1.69 (1 H, m), 1.95 (1 H, m), 3.20 (1 H, ddd, J 5, 8, 5 Hz), 4.81 (1 H, d, J 5 Hz) and 7.0–7.4 (4 H, m). trans-4c $\delta_{\rm H}$ 4.52 (1 H, d, J 3 Hz).

3-Chloro-3,4-dihydro-4-isopropyl-2H-1-benzopyran-2-one 4d, [PrⁱMgBr, Et₂O–PhMe; 0 °C; 61% as a mixture of cis/trans isomers (90:10)]; b.p. 95–97 °C/0.5 mmHg (Found: C, 64.2; H, 5.7. $C_{12}H_{13}ClO_2$ requires C, 64.15; H, 5.8%); m/z 226 (M⁺ + 2, 5%), 224 (M⁺, 15) and 147 (100). cis-4d m.p. 70–71 °C; $\delta_{H}(80$ MHz; CDCl₃) 0.75 (3 H, d, J 7 Hz), 1.03 (3 H, d, J 7 Hz), 2.55 (1 H, m), 3.20 (1 H, dd, J 7, 4 Hz), 4.91 (1 H, d, J 6 Hz) and 7.0–7.45 (4 H, m). trans-4d δ_{H} 4.65 (1 H, d, J 2 Hz).

3-Bromo-4-ethyl-3,4-dihydro-2H-1-benzopyran-2-one **5b**. [EtMgBr, THF; 0 °C; 59% as a mixture of *cis/trans* isomers (80:15)] (Found: C, 51.7; H, 4.2. $C_{11}H_{11}BrO_2$ requires C, 51.8; H, 4.35%); *m/z* 256 (M⁺ + 2, 1%), 254 (M⁺, 2) and 131 (100). *cis-***5b** m.p. 67–68 °C; $\delta_{\rm H}(200 \text{ MHz}; \text{CDCl}_3)$ 1.00 (3 H, t, *J* 7 Hz), 1.60–2.10 (2 H, m), 3.10 (1 H, dt, *J* 4, 7 Hz), 4.80 (1 H, d, *J* 4 H) and 6.70–7.40 (4 H, m). *trans-***5b** $\delta_{\rm H}$ 4.57 (1 H, d, *J* 2 Hz).

3-Bromo-4-butyl-3,4-dihydro-2H-1-benzopyran-2-one **5c.** [BuMgBr, THF; 0 °C; 70% as a mixture of *cis/trans* isomers (91:9)] (Found: C, 55.0; H, 5.4. C_{1.3}H_{1.5}BrO₂ requires C, 55.1; H, 5.3%); *m/z* 284 (M⁺ + 2, 20%), 282 (M⁺, 19) and 107 (100); *cis*-**5c** m.p. 75–76 °C; δ_H(80 MHz; CDCl₃) 0.96 (3 H, t, *J* 6 Hz), 1.41 (4 H, m), 1.85 (2 H, m), 3.13 (1 H, dt, *J* 4, 7 Hz), 4.76 (1 H, d, *J* 4 Hz) and 6.70–7.38 (4 H, m). *trans*-**5c** δ_H 4.56 (1 H, d, *J* 2 Hz).

3-Bromo-3,4-dihydro-4-isopropyl-2H-1-benzopyran-2-one **5d**. [PrⁱMgBr, Et₂O; 0 °C; 64% as mixture of *cis/trans* isomers (95:5)] (Found: C, 53.4; H, 4.8. $C_{12}H_{13}BrO_2$ requires C, 53.55; H, 4.9%); *m/z* 270 (M⁺ + 2, 6%), 268 (M⁺, 6) and 147 (100). cis- **5b** m.p. 57–58 °C; $\delta_{H}(80 \text{ MHz}; \text{CDCl}_3)$ 0.84 (3 H, d, *J* 7 Hz), 1.06 (3 H, d, *J* 7 Hz), 2.50 (1 H, m), 3.10 (1 H, dd, *J* 5, 6 Hz), 4.87 (1 H, d, *J* 6 Hz) and 6.90–7.30 (4 H, m). *trans*-**5d** δ_{H} 4.76 (1 H, d, *J* 2 Hz).

3-Chloro-3,4-dihydro-2,4-diphenyl-2H-1-benzopyran-2-ol **6f**. (PhMgBr, Et₂O–PhMe; 0 °C; 15%); m.p. 187–188 °C (Found: C, 74.8; H, 4.95. $C_{21}H_{17}ClO_2$ requires C, 74.9; H, 5.1%); $\delta_{H}[80$ MHz; CDCl₃–(CD₃)₂SO] 4.3 (1 H, q, J 11 Hz) and 6.65–7.70 (14 H, m); m/z 338 (M⁺ + 2, 2%), 336 (M⁺, 4) and 105 (100).

Phenyl-2,3-dihydro-3-phenylbenzofuran-2-yl ketone **7f**. (PhMgBr, Et₂O–PhMe; 0 °C; 54%); m.p. 125–126 °C (Found: C, 83.9; H, 5.25. C₂₁H₁₆O₂ requires C, 84.0; H, 5.4%); $\delta_{\rm H}$ [80 MHz; CDCl₃–(CD₃)₂SO] 5.02 (1 H, d, *J* 7 Hz), 5.77 (1 H, d, *J* 7 Hz), 6.80–7.70 (12 H, m) and 7.85–8.10 (2 H, m); *m*/z 300 (M⁺, 52%) and 167 (100).

3-(o-*Hydroxyphenyl*)-1,3-*diphenylpropan*-1-*one* **8f**. (PhMgBr, PhMe; 0 °C; 10%); m.p. 167–168 °C (lit.,^{9,10} 166 °C) (Found: C, 83.55; H, 6.1. Calc. for C₂₁H₁₈O₂: C, 83.4; H, 6.0%); δ_H[80 MHz; CDCl₃–(CD₃)₂SO] 3.81 (1 H, d, *J* 4 Hz), 5.21 (1 H, t, *J* 8 Hz), 6.61–7.38 (12 H, m), 7.71–8.00 (2 H, m) and 8.18 (1 H, s); *m/z* 302 (M⁺, 26%) and 105 (100).

(E)-3-Chloro-4-(o-hydroxyphenyl)-2-methylbut-3-en-2-ol (9a). (MeMgI, Et₂O–PhMe; 0 °C; 79%); m.p. 105–106 °C (Found: C, 62.2; H, 6.05. $C_{11}H_{13}ClO_2$ requires C, 62.1; H, 6.2%); $\delta_{H}(80 \text{ MHz; CDCl}_3)$ 1.46 (6 H, s), 6.69–7.24 (4 H, m) and 7.04 (1 H, s); m/z 214 (M⁺ + 2, 2%), 212 (M⁺, 5) and 179 (100).

(E)-2-Chloro-3-ethyl-1-(o-hydroxyphenyl)pent-1-en-3-ol **9b**. (EtMgBr, PhMe; 0 °C; 63%); m.p. 95–96 °C (Found: C, 64.8; H, 7.2. $C_{13}H_{17}ClO_2$ requires C, 64.9; H, 7.1%); $\delta_H(80 \text{ MHz}; CDCl_3)$ 0.94 (6 H, t, J 7 Hz), 1.30–2.11 (4 H, m), 6.50–7.23 (4 H, m) and 7.03 (1 H, s); m/z 242 (M⁺ + 2, 1%), 240 (M⁺, 2) and 165 (100).

(E)-3-Butyl-2-chloro-1-(o-hydroxyphenyl)hept-1-en-3-ol **9c**, (BuMgBr, PhMe; 0 °C; 80%); m.p. 84–85 °C (Found: C, 68.8; H, 8.4. $C_{17}H_{25}ClO_2$ requires C, 68.8; H, 8.5%); $\delta_{H}(80 \text{ MHz}; CDCl_3)$ 0.92 (6 H, m), 1.10–2.11 (12 H, m), 6.87 (1 H, s) and 6.90–7.26 (4 H, s); m/z 298 (M⁺ + 2, 1%), 296 (M⁺, 3) and 221 (100).

(E)-2-Chloro-1-(o-hydroxyphenyl)-3-isopropyl-4-methylpent-1-en-3-ol **9d**. (PrⁱMgBr, Et₂O; 0 °C; 36%); m.p. 122–123 °C (Found: C, 67.1; H, 7.7. $C_{15}H_{21}ClO_2$ requires C, 67.0; H, 7.9%); $\delta_{H}(80 \text{ MHz; CDCl}_3)$ 0.71–1.62 (6 H, m), 1.82–2.51 (2 H, m), 6.71–7.47 (4 H, m) and 6.79 (1 H, s); *m/z* 270 (M⁺ + 2, 1%), 268 (M⁺, 4) and 71 (100).

(E)-2-Chloro-3-(o-hydroxyphenyl)-1,1-diphenylprop-2-en-1-ol 9f. (PhMgBr, PhMe; 0 °C; 54%); m.p. 146–147 °C (Found: C, 74.6; H, 5.2. $C_{21}H_{17}ClO_2$ requires C, 74.9; H, 5.1%); δ_{H} [80 MHz; CDCl₃–(CD₃)₂SO] 6.75 (1 H, s) and 6.89–7.72 (14 H, m); *m/z* 338 (M⁺ + 2, 2%), 336 (M⁺, 2) and 105 (100).

(*E*)-3-*Bromo*-4-(o-*hydroxyphenyl*)-2-*methylbut*-3-*en*-2-*ol* **10a**. (MeMgI, PhMe; 0 °C; 70%); m.p. 89–99 °C (Found: C, 51.5; H, 5.15. C₁₁H₁₃BrO₂ requires C, 51.4; H, 5.1%); $\delta_{\rm H}(80$ MHz; CDCl₃) 1.47 (6 H, s), 6.74–7.25 (4 H, m) and 6.91 (1 H, s); *m/z* 258 (M⁺ + 2, 2%), 256 (M⁺, 2) and 115 (100).

(E)-2-Bromo-3-ethyl-1-(o-hydroxyphenyl)pent-1-en-3-ol **10b**. (EtMgBr, PhMe; 0 °C; 60%); m.p. 100–101 °C (Found: C, 54.9; H, 5.7. C₁₃H₁₇BrO₂ requires C, 54.75; H, 6.0%); $\delta_{\rm H}$ (80 MHz; CDCl₃) 0.95 (6 H, t, *J* 7 Hz), 1.11–2.10 (4 H, m), 6.72–7.25 (4 H, m) and 7.06 (1 H, s); *m*/*z* 286 (M⁺ + 2, 14%), 284 (M⁺, 15) and 128 (100).

(E)-2-Bromo-3-butyl-1-(o-hydroxyphenyl)hept-1-en-3-ol **10c**. (BuMgBr, PhMe; 0 °C; 63%); m.p. 87.5–88.5 °C (Found: C, 59.65; H, 7.3. $C_{17}H_{25}BrO_2$ requires C, 59.8; H, 7.4%); $\delta_H(80 \text{ MHz}; \text{CDCl}_3)$ 1.05 (6 H, m), 1.15–2.09 (8 H, m), 2.51–2.71 (4 H, m), 6.71–7.25 (4 H, m) and 7.05 (1 H, s); m/z 342 (M⁺ + 2, 1%), 340 (M⁺, 1) and 85 (100).

(E)-2-Bromo-1-(o-hydroxyphenyl)-3-isopropyl-4-methylprop-1-en-3-ol 10d. (PrⁱMgBr, PhMe; 0 °C; 20%); m.p. 119–120 °C (Found: C, 57.45; H, 6.7. $C_{15}H_{21}BrO_2$ requires C, 57.5; H, 6.8%); $\delta_{\rm H}(80$ MHz; CDCl₃) 0.81–1.85 (12 H, m), 1.71–2.72 (2 H, m), 6.70–7.49 (4 H, m) and 7.01 (1 H, s); m/z 314 (M⁺ + 2, 1%), 312 (M⁺, 1) and 91 (100).

2-Bromo-3-(o-hydroxyphenyl)-1,1-diphenylprop-2-en-1-ol 10f. (PhMgBr, PhMe; 0 °C; 14%); m.p. 121–122 °C (Found: C, 66.3; H, 4.55. $C_{21}H_{17}BrO_2$ requires C, 66.2; H, 4.5%); δ_H(80 MHz; CDCl₃) 6.52–7.53 (14 H, m) and 7.02 (1 H, s); m/z 364 (M⁺ + 2 - H₂O, 2%), 362 (M⁺ - H₂O, 2) and 283 (100).

(E)-3-Chloro-4-(o-hydroxyphenyl)but-3-en-2-ol11a. (DIBAL-H/MeMgI, PhMe; 0 °C; 79%); m.p. 127.5–128.5 °C (Found: C, 60.4; H, 5.5. $C_{10}H_{11}CIO_2$ requires C, 60.5; H, 5.6%); $\delta_{H}(80$ MHz; CDCl₃) 1.38 (3 H, d, J 6 Hz), 4.71 (1 H, q, J 6 Hz), 6.68 (1 H, s) and 6.71–7.23 (4 H, m); m/z 200 (M⁺ + 2, 1%), 198 (M⁺, 4) and 165 (100).

(E)-2-*Chloro*-1-(o-*hydroxyphenyl*)*pent*-1-*en*-3-*ol* **11b**. (Et₃Al, PhMe; 0 °C; 50%); m.p. 74–75 °C (Found: C, 62.15; H, 6.1. $C_{11}H_{13}ClO_2$ requires C, 62.1; H, 6.2%); $\delta_H(80 \text{ MHz}; CDCl_3) 0.9$ (3 H, t, *J* 7 Hz), 1.75 (2 H, qd, *J* 7, 7 Hz), 4.34 (1 H, t, *J* 7 Hz), 6.93 (1 H, s) and 6.98–7.31 (4 H, m); *m*/*z* 214 (M⁺ + 2, 1%), 212 (M⁺, 4) and 165 (100).

(E)-2-Chloro-1-(o-hydroxyphenyl)hept-1-en-3-ol 11c. (Bu₃Al, PhMe; 0 °C; 78%); m.p. 78–79 °C (Found: C, 64.8; H, 7.2. C₁₃H₁₇ClO₂ requires C, 64.9; H, 7.1%); $\delta_{H}(80 \text{ MHz}; \text{CDCl}_{3}) 0.8$ (3 H, t, J 5 Hz), 1.22 (4 H, m), 1.69 (2 H, m), 4.57 (1 H, t, J 7 Hz), 6.71 (1 H, s) and 6.81–7.22 (4 H, m); *m*/z 242 (M⁺ + 2, 1%), 240 (M⁺, 2) and 165 (100).

(E)-2-Chloro-1-(o-hydroxyphenyl)-4-methylpent-1-en-3-ol 11d. (PrⁱMgBr, PhMe; 0 °C; 49%); m.p. 100–101 °C (Found: C, 63.6; H, 6.5. $C_{12}H_{15}CIO_2$ requires C, 63.6; H, 6.7%); $\delta_H(80$ MHz; CDCl₃) 0.81 (3 H, d, J 7 Hz), 1.01 (3 H, d, J 7 Hz), 1.70–2.11 (1 H, m), 3.99 (1 H, d, J 9 Hz), 6.75 (1 H, s) and 6.81–7.28 (4 H, m); m/z228 (M⁺ + 2, 1%), 226 (M⁺, 4) and 165 (100).

(E)-2-Chloro-1-(o-hydroxyphenyl)-5-methylhex-1-en-3-ol **11e**. (Bu₃ⁱAl, PhMe; 0 °C; 34%); m.p. 84–85 °C (Found: C, 65.0; H, 7.2. $C_{13}H_{17}ClO_2$ C, 64.9; H, 7.1%); $\delta_H(80$ MHz; CDCl₃) 0.74 (3 H, d, J 6 Hz), 0.85 (3 H, d, J 6 Hz), 1.12–1.20 (1 H, m), 1.51– 1.62 (2 H, m), 3.5 (1 H, m), 6.75 (1 H, s) and 6.81–7.22 (4 H, m); m/z 242 (M⁺ + 2, 1%), 240 (M⁺, 2), and 165 (100).

(E)-2-Bromo-1-(o-hydroxyphenyl)pent-1-en-3-ol **12b**. (DIBAL-H/EtMgBr, PhMe; 0 °C; 79%); m.p. 94–95 °C (Found: C, 51.3; H, 5.15. $C_{11}H_{13}BrO_2$ requires C, 51.4; H, 5.1%); $\delta_{\rm H}(80$ MHz; CDCl₃) 0.84 (3 H, t, J 7 Hz), 1.79 (2 H, q, J 7 Hz), 4.24 (1 H, t, J 7 Hz), 6.71–7.31 (4 H, m) and 7.01 (1 H, s); m/z 258 (M⁺ + 2, 9%), 256 (M⁺, 9) and 209 (100).

(E)-2-Bromo-1-(o-hydroxyphenyl)hept-1-en-3-ol **12c**. (Bu₃Al, PhMe; 0 °C; 78%); m.p. 79–80 °C (Found: C, 54.9; H, 5.9. $C_{13}H_{17}BrO_2$ requires C, 54.75; H, 6.0%); $\delta_H(80 \text{ MHz; CDCl}_3)$ 0.87 (3 H, t, J 5 Hz), 1.12–1.51 (4 H, m), 1.57–1.73 (2 H, m), 4.38 (1 H, t, J 6 Hz), 6.71–7.29 (4 H, m) and 7.01 (1 H, s); *m/z* 286 (M⁺ + 2, 23%), 284 (M⁺, 24) and 209 (100).

(E)-2-Bromo-1-(o-hydroxyphenyl)-4-methylpent-1-en-3-ol **12d**. (PrⁱMgBr, PhMe; 0 °C; 50%); m.p. 122–123 °C (Found: C, 55.1; H, 5.5. $C_{12}H_{15}BrO_2$ requires C, 53.15; H, 5.6%); $\delta_{\rm H}(80$ MHz; CDCl₃) 0.77 (3 H, d, J 7 Hz), 1.01 (3 H, d, J 7 Hz), 3.77 (1 H, d, J 9 Hz), 6.91–7.13 (4 H, m) and 7.03 (1 H, s); m/z 272 (M⁺ + 2, 6%), 270 (M⁺, 7) and 211 (100).

(E)-2-Bromo-3-(o-hydroxyphenyl)-1-phenylprop-2-en-1-ol **12f.** (DIBAL-H/PhMgBr, PhMe; 0 °C; 7%); m.p. 100–101 °C (Found: C, 59.2; H, 4.2. $C_{15}H_{13}BrO_2$ requires C, 59.0; H, 4.3%); $\delta_{\rm H}(80$ MHz; CDCl₃) 5.61 (1 H, s), 7.02 (1 H, s) and 6.73–7.41 (9 H, m); m/z 306 (M⁺ + 2, 1%), 304 (M⁺, 1) and 207 (100).

(E)-2-*Chloro*-3-(o-*hydroxyphenyl*)*prop*-2-*en*-1-*ol* **13**. (Buⁱ₃Al, PhMe; 0 °C; 43%); m.p. 109–110 °C (Found: C, 58.4; H, 4.8. C₉H₉ClO₂ requires C, 58.55; H, 4.9%); $\delta_{\rm H}(80 \text{ MHz}; \text{CDCl}_3) 4.20$ (2 H, s), 6.6 (1 H, s), 6.71–7.15 (4 H, m) and 7.02 (1 H, s); *m/z* 186 (M⁺ + 2, 4%), 184 (M⁺, 14) and 131 (100).

2-Bromo-3-(o-hydroxyphenyl)prop-2-en-1-ol 14. (Buⁱ₃Al, PhMe; 0 °C; 72%); m.p. 129–130 °C (Found: C, 47.3; H, 3.9. C₉H₉BrO₂ requires C, 47.2; H, 4.0%); $\delta_{\rm H}$ [80 MHz; CDCl₃–(CD₃)₂SO] 4.18 (2 H, s), 6.96 (1 H, s) and 6.75–7.25 (4 H, m); *m*/*z* 230 (M⁺ + 2, 4%), 228 (M⁺, 4) and 131 (100).

(Z)-4-(o-Hydroxyphenyl)-2-methylbut-3-en-2-ol 15a. (2, MeLi, Et₂O; 0 °C; 23%); m.p. 53 °C (lit., ¹¹ 53–55 °C); $\delta_{\rm H}(80$

MHz; CDCl₃) 1.33 (6 H, s), 5.93 (1 H, d, *J* 12 Hz), 6.36 (1 H, d, *J* 12 Hz) and 6.71–7.21 (4 H, m).

(Z)-3-Butyl-1-(o-hydroxyphenyl)hept-1-en-3-ol **15c**. (**2**, BuLi, PhMe; -40 °C; 32%); yellow oil; $\delta_{\rm H}(80 \text{ MHz}; \text{CDCl}_3) 0.86$ (6 H, m), 0.93-1.71 (12 H, m), 5.71 (1 H, d, J 13 Hz), 6.36 (1 H, d, J 13 Hz) and 6.71-7.21 (4 H, m); m/z 263 (M⁺ + 1, 6%), 262 (M⁺, 30) and 205 (100); On distillation this compound was transformed into 2,2-dibutyl-2*H*-1-benzopyran. Yellow oil, b.p. 96 °C/1 mmHg (lit.,¹¹ 161-163 °C/15 mmHg); $\delta_{\rm H}(80 \text{ MHz};$ CDCl₃) 0.87 (6 H, m), 0.94-1.80 (12 H, m), 5.44 (1 H, d, J 10 Hz), 6.34 (1 H, d, J 10 Hz) and 6.71-7.20 (4 H, m); m/z 245 (M⁺ + 1, 1%), 244 (M⁺, 4) and 187 (100).

(E)-4-Bromo-3-ethyl-5-(o-hydroxyphenyl)hex-4-en-3-ol **16b**. (EtMgBr, Et₂O; 0 °C; 65%); m.p. 84–85 °C (Found: C, 56.15; H, 6.3. C₁₄H₁₉BrO₂ requires C, 56.2; H, 6.4%); $\delta_{\rm H}(80$ MHz; CDCl₃) 0.89 (3 H, t, J 7 Hz), 0.95 (3 H, t, J 7 Hz), 1.61 (2 H, m), 2.01 (2 H, m), 2.19 (3 H, s), 6.71–7.17 (4 H, m) and 6.91 (1 H, s); m/z 300 (M⁺ + 2, 7%), 298 (M⁺, 8) and 57 (100).

3-*Chloro*-2H-1-*benzopyran*-2-*ol* **18**. (DIBAL-H. PhMe; -40 °C; 79%); m.p. 162–163 °C (Found: C, 59.4; H, 3.8. C₉H₇ClO₂ requires C, 59.2; H, 3.9%); δ_{H} [80 MHz; CDCl₃–(CD₃)₂SO] 6.06 (1 H, s), 6.75 (1 H, s) and 6.82–7.21 (4 H, m); *m/z* 184 (M⁺ + 2, 1%), 182 (M⁺, and M⁺ + 2 - H₂, 34) and 180 (M⁺ + H₂, 100).

3-Bromo-2H-1-benzopyran-2-ol **19**. (DIBAL-H, PhMe; -40 °C; 80%); m.p. 155–156 °C (Found: C, 47.7; H, 3.2. C₉H₇BrO₂ requires C, 47.6; H, 3.1%); $\delta_{\rm H}$ [80 MHz; CDCl₃– (CD₃)₂SO] 5.78 (1 H, s), 6.82 (1 H, s) and 6.78–7.31 (4 H, m); m/z 228 (M⁺ + 2, 17%), 226 (M⁺, 17) and 147 (100).

Dehydrohalogenation of Compounds 4 and 5. Synthesis of 4-Alkylcoumarins 20.—A mixture cis- and trans-4 or 5 (1.6 mmol) in the appropriate solvent (20 cm³) was refluxed with a base (Table 5) until the reaction was complete (TLC). The solution was cooled to room temperature and acidified with 6 mol dm⁻³ HCl. The organic layer was decanted, washed with aq. NaHCO₃ and dried over anhydrous MgSO₄. The solvent was eliminated and the residue was recrystallized from chloroform. The following compounds were thus prepared.

4-*Methyl*-2H-1-*benzopyran*-2-*one* **20**a. (Ac₂O–NaOAc; 52%); m.p. 81–82 °C (lit.,¹² 82 °C) (Found: C, 74.8; H, 4.9. Calc. for $C_{10}H_8O_2$: C, 75.0; H, 5.0%); $\delta_H(80 \text{ MHz}; \text{CDCl}_3)$ 2.51 (3 H, d, J 1 Hz), 6.18 (1 H, q, J 1 Hz) and 6.85–7.61 (4 H, m).

4-*Ethyl*-2H-1-*benzopyran*-2-*one* **20b**. (C₆H₆-pyridine, **5b**; 75%); m.p. 69–70 °C (lit.,¹³ 70 °C) (Found: C, 75.9; H, 5.7. Calc. for C₁₁H₁₀O₂: C, 75.85; H, 5.9%); $\delta_{\rm H}$ (80 MHz; CDCl₃) 1.36 (3 H, t, *J* 7 Hz), 2.81 (2 H, m), 6.29 (1 H, t, *J* 1 Hz) and 7.09–7.84 (4 H, m); *m*/z 174 (M⁺, 40% and 131 (100)

4-Butyl-2H-1-benzopyran-2-one **20c**. (C_6H_6 -pyridine **5c**; 89%); m.p. 67–68 °C (Found: C, 77.1; H, 6.85. $C_{13}H_{14}O_2$ requires C, 77.2; H, 7.0%); $\delta_H(80 \text{ MHz}; \text{CDCl}_3) 0.99$ (3 H, td, J 6, 1 Hz), 1.09–1.98 (4 H, m), 2.77 (2 H, m), 6.26 (1 H, t, J 1 Hz) and 7.12–7.61 (4 H, m); m/z 203 (M⁺ + 1, 4%), 202 (M⁺, 20), and 160 (100).

4-Isopropyl-2H-1-benzopyran-2-one **20d**. (C_6H_6 -pyridine, **5d**, 84%); b.p. 85-86 °C/1 mmHg (Found: C, 76.7; H, 6.35. $C_{12}H_{12}O_2$ requires C, 76.6; H, 6.4%); $\delta_H(80 \text{ MHz; CDCl}_3)$ 1.31 (6 H, d, J 7 Hz), 3.30 (1 H, m), 6.27 (1 H, d, J 1 Hz) and 7.05-7.61 (4 H, m); m/z 189 (M⁺ + 1, 7%), 188 (M⁺, 51) and 145 (100).

X-Ray Crystallographic Structure Determination of Compound 5d.—-Crystal data. The structure of compound 5d, C₁₂H₁₃BrO₂, was determined by X-ray diffraction. M_r = 269.14, monoclinic, space group P21/c, a = 9.411(2), b = 5.843(6), c = 21.100(5) Å, $\beta = 99.47(2)^{\circ}$, V = 1 144(1) Å³, Z = 4, $D_x = 1.56$ g cm⁻³. Mo-K α radiation (graphite crystal monochromator, $\lambda = 0.710$ 73 Å, μ (Mo-K α) = 35.3 cm⁻¹, F(000) = 544, T = 293 K. Final conventional *R*-factor = 0.154 for 954 'observed' reflections and 125 variables.

Colourless crystal, $0.33 \times 0.23 \times 0.17$ mm. Mo-Ka radiation with graphite crystal monochromator, Enraf-Nonius CAD4 single-crystal diffractometer. Unit-cell dimensions were determined from the angular settings of 25 reflections with 10° < $\theta < 15^{\circ}$. Space group was determined to be P21/c from systematic absences. 3694 Reflections measured, hkl range (-13, 0, 0) to (13, 8, 29), theta limits $(0^{\circ} < \theta < 30^{\circ})$. ω -2 θ Scan technique with a variable scan rate with a maximum scan time of 30 s per reflection. Intensity checked by monitoring three standard reflections every 60 min. Crystals were very unstable under X-rays and led to very high drift corrections. Because of this, neither good values of agreement factors nor accurate parameters were expected. Nevertheless, data collection and structure determination were carried out since the main interest of the work was to determine the molecular geometry. Final drift correction factors were between 1.00 and 2.29. Profile analysis was performed on all reflections.14,15 Some doubly measured reflections were averaged, $R_{\rm int} = \Sigma (I - \langle I \rangle) / \Sigma I =$ 0.095, 1009 unique reflections and 954 observed with I > $3\sigma(I)$. Lorentz and polarization corrections were applied and data reduced to |F|-values. Structure solved by direct methods, using the program SHELX86.¹⁶ Isotropic least-squares refinement, using SHELX,¹⁷ converged to R = 0.20. Anisotropic refinements followed by a difference Fourier synthesis allowed the location of some hydrogen atoms.

Positional parameters and anisotropic thermal parameters of the non-hydrogen atoms were refined, except those for O(21), C(4) and C(42) which were isotropically refined. All the hydrogen atoms were isotropically refined, with a common thermal parameters, riding, at constraining distances, on their parent atoms, except for H(31) and H(41), which co-ordinates were fixed. The final conventional agreement factor was R =0.154 for the 954 'observed' reflections and 125 variables. Function minimized $\Sigma w(F_0 - F_0)^2$, w = 1. Maximum shiftover-error ratio in the last full-matrix least-squares cycle was < 0.001. Final difference Fourier map showed no peaks > 1.32 e Å⁻³ nor < -2.56 e Å⁻³. Fractional positional parameters for non-hydrogen atoms are given in Table 7, while Table 8 collects selected geometrical parameters.* Atomic scattering factors were taken from the International Tables for X-ray Crystallography.¹⁸ The plot was made with the PLUTO¹⁹ program. Geometrical calculations were made with PARST.20 All calculations were made on an IBM 3090 Computer at the Computer Center of the University of Oviedo.

References

- 1 Chr. Ivanov and A. Bojilova, Synthesis, 1974, 708.
- 2 G. A. Holmberg, Acta Chem. Scand., 1961, 15, 1255.
- 3 I. Renvall, Acta Acad. Aboensis, Math. Phys., 1969, 29, 1 (Chem. Abstr., 1970, 72, 66737p).
- 4 A. Alberola, F. Alonso and A. Gonzalez Ortega, An. Quin., Ser. C, 1982, 78, 9.
- 5 A. Alberola, A. Gonzalez, R. Pedrosa, J. L. Pérez and J. F. Rodriguez, J. Heterocycl. Chem., 1983, 20, 715.
- 6 J. C. Heeth, S. Z. Cardon and H. S. Halbedel, USP 2 466 657/1949 (*Chem. Abstr.*, 1949, **43**, 7513f).
- 7 K. A. Thakar, J. Indian Chem. Soc., 1963, 40, 539.
- 8 J. Lecocq, Ann. Chim., 1948, 3, 62.
- 9 A. Lowenbein, E. Pongracz and E. A. Spiess, Ber. Disch. Chem. Ges., Abt. B, 1924, 57, 1517.
- 10 G. A. Holmberg and J. Axberg, Acta Chem. Scand., 1963, 17, 967.

^{*} The fractional atomic co-ordinates, bond lengths and angles, torsion angles and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre (see 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1991, issue 1, p. xviii).

- 11 L. I. Smith, P. M. Ruoff and W. B. Irwin, J. Am. Chem. Soc., 1940, 62, 12.
- 12 E. H. Woodrukk, Org. Synth., 1944, 24, 69.
- 13 W. Cocker, B. E. Cross, J. T. Edward, D. S. Jenkinson and J. Mc. Cormick, J. Chem. Soc., 1953, 2355.
- 14 M. S. Lehman and F. K. Larsen, Acta Crystallogr., Sect. A, 1974, 30, 580.
- 15 D. F. Grant and E. J. Gabe, J. Appl. Crystallogr., 1978, 11, 114.
- 16 G. M. Sheldrick, SHELX86, Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Clarendon Press, Oxford, 1985, p. 175.
- 17 G. M. Sheldrick, SHELX, A Program for Crystal Structure Determination, University Chemical Laboratory, Cambridge, England, 1976.
- 18 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4.
- 19 W. D. S. Motherwell, PLUTO, A Program for Plotting Molecular and Crystal Structures, University Chemical Laboratory, Cambridge, England, 1976.
- 20 M. Nardelli, Comput. Chem., 1983, 7, 95.

Paper 0/02837A Received 25th June 1990 Accepted 2nd August 1990